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The synthesis of novel monocyclic di- and triphenyl-substituted hydroperoxysultims rac-cis 7 and 8
and sultams 11 and 12, as well as the 3-oxosultams 15 and 16, by oxidation of corresponding salts 1 and
2 with H2O2 in acetic acid is described. For the first time, it was possible to isolate a 3-hydroperoxide
(3a) and also to determine the position of the primary oxidizing attack on the C-3 atom of isothiazolium
salts 1, which have generally a much lower oxidation reactivity. Novel 3-hydroxysultams 13 and 14
were obtained by oxidation reaction of salts 1 and 2 with magnesium monoperoxyphthalate (MMPP)
in acetonitrile in the ultrasound bath.

Keywords: Isothiazolium salts; Oxidation; Hydroperoxides; Sultams; Sultims; HLE

1. Introduction

Isothiazoles and their oxyfunctionalized derivatives show a wide spectrum of biological and
pharmaceutical activities [1–3]. The monocyclic isothiazol-3(2H )-ones A and B are potent
industrial microbiocides with antifungal and antibacterial activities [4]. The most famous
isothiazole is saccharin C, which was first prepared through an oxidative cyclization of o-
toluenesulfonamide [5]. N-Substituted saccharin derivatives D–F show an inhibitory effect
on the human leukocyte elastase (HLE) [6]. In recent investigations, we have synthesized
2-phenyl-substituted isothiazol-3(2H )-one 1,1-dioxides and demonstrated their activity as
potent inhibitors of HLE [7]. Marco and Ingate have synthesized the first monocyclic 2,3-
dihydroisothiazole 1,1-dioxide G, which has anti-HIV-1-activity [8–12].

Here, we would like to describe the preparation of novel diaryl- and triaryl-substituted
isothiazolium salts 1 and 2 and their oxidation cascade to stable monocyclic 3-hydroperoxy-
isothiazoles 3 and 4, and 3-hydroperoxysultims 7 and 8 and -sultams 11 and 12, as well as
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212 J. Fahrig et al.

3-hydroxysultams 13 and 14, respectively. The oxidation reaction is concluded by formation
of the 3-oxosultams 15 and 16.

2. Results and discussion

The new isothiazolium salts 1 and 2 were conveniently synthesized by intramolecular cyclo-
condensation of β-thiocyanatovinyl aldehydes and the variously substituted anilines in the
presence of perchloric acid [13].

The mechanism of the oxidation reaction is shown in scheme 1. The nucleophilic attack of
H2O2 on C-3 has been recently demonstrated to be the first step of the oxidation process of 2,4-
diaryl-substituted salts 2 (R1 = CH3) to 3-hydroperoxyisothiazole 4 (R1 = CH3; R2 = 2-Cl
or 2,6-Cl2) by HPLC-API-MS/MS-coupling [14]. To isolate such 3-hydroperoxyisothiazoles
4, the oxidation of salts possessing low reactivity must be examined. Baumann et al. have
already shown that the triaryl-substituted salts 1 (R1 = C6H5) are less reactive than the salts
2 and bicyclic isothiazolium salts [14, 15]. Therefore, for this investigation, we carried out
the oxidation of the 2,4,5-triphenylisothiazolium perchlorates 1a–c at different reaction times
(10, 15, 20 and 30 min) in H2O2 and glacial acetic acid at room temperature; a precipitate
was obtained, isolated and characterized. Usually a mixture of 3, 7, 11 and unchanged salt 1
was obtained. In one case, after 15 minutes, only 3-hydroperoxyisothiazole 3a [R1 = C6H5,
R2 = 2,4-(NO2)2] was found in addition to starting material 1a (3:1). In the 1H NMR spec-
trum of 3-hydroperoxyisothiazole 3a with non-oxidized S-atom, the H-3 proton appears at
6.36 ppm, and in the 13C NMR spectrum the chemical shift of C-3 was found at 96.18 ppm.
In the ESI negative-mass spectrum, a molecular mass peak at 436.06 m/z corresponding to
structure C21H15N3O6S (437.43 g/mol) was observed. Thus, for the first time, we could isolate
crystalline 3-hydroperoxyisothiazole 3a [R1 = C6H5, R2 = 2, 4-(NO2)2], an intermediate in
the oxidation of the salts 1a and which is a strong acceptor-triphenyl-substituted salt, but
possessing reduced oxidation reactivity.

The second attack of oxidant at the S-atom of hydroperoxides 3 and 4 then results in the
formation of the stable crystalline 3-hydroperoxysultims rac-cis 7a and rac-cis 8d,e after 1.5–
3.5 h at room temperature in H2O2/AcOH (21 to 86%, see scheme 1). In the other cases, only
a mixture of sultims rac-cis/trans 7b,c and 8a,c with sultams 11b,c and 12a,c was obtained
(1.5–23 h). The isolation of sultims 7a–c and 8a,c–e was only possible with acceptor- and
unsubstituted salts 1 and 2 (see scheme 1). Unexpectedly, for the first time, a pure stable
hydroperoxide rac-cis 8e with unsubstituted N-aryl ring could be isolated in 21% yield,
despite its parent anilinium ion possessing a relatively high pKa of 4.63. In former inves-
tigations, only stable 3-hydroperoxysultims derived from anilinium ions of pKa < 3.5 could
be obtained [16, 17].
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Oxyfunctionalization of isothiazolium salts 213

SCHEME 1 Pathway of the oxidation of salts 1 and 2 to 3-oxosultams 15 and 16.

The stable 3-hydroperoxysultams 11a,c,e and f were obtained after 72–120 h, and 12a,d–f
after 24–96 h at room temperature, while the very stable 11b and 12c were obtained after 8 s
at 80 ◦C as pure crystalline products in very good yields (57–95%).

The structure of the 3-hydroperoxysultams 12 was confirmed by X-ray crystal-structure
analysis of 12f (R1 = CH3, R2 = 4-OCH3). The structure of the sultam 12f presented in
figure 1 and the crystallographic data are given in the text.

The isothiazole ring in 12f is approximately planar. Sultam 12f shows a helical arrange-
ment of the intermolecular classical O–O–H...O–S–O strong hydrogen bond (3.90 Å) along
the 2 screw axis (figure 2) and a weak intermolecular hydrogen bond between the atoms
C(1)–H(1)...O(5) (3.24 Å) and C(15)–H(15)...O(4) (3.33 Å).
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Figure 1. Molecular structure of 3-hydroperoxy-5-methyl-2-(4-methoxyphenyl)-4-phenyl-2,3-dihydroisothiazole
1,1-dioxide 12f [18]. The selected bond lengths [Å] and angles [◦] for 12f with estimated standard deviations
in parentheses are: S(1)–O(1) 1.436(1), S(1)–O(2) 1.431(1), S(1)–N(1) 1.616(2), S(1)–C(8) 1.746(2), O(3)–C(10)
1.407(2), O(3)–O(4) 1.468(2), O(4)–H(10) 1.00(4), N(1)–C(10) 1.444(2), C(10)–C(7) 1.509(2), C(7)–C(8) 1.334(3)
and O(1)–S(1)–O(2) 114.86(9), O(1)–S(1)–N(1) 110.79(9), O(2)–S(1)–N(1) 111.77(9), O(1)–S(1)–C(8) 111.21(8),
O(2)–S(1)–C(8) 111.84(9), O(3)–O(4)–H(10) 102.0(2), C(8)–C(7)–C(10) 114.1(2), N(1)–C(10)–C(7) 106.7(2),
S(1)–N(1)–C(10) 114.2(1), C(10)–O(3)–O(4) 105.9(1).

The structures of the novel 3-hydroperoxy-sultims 7 and 8 and -sultams 11 and 12 were
established by IR and NMR spectroscopy and by mass spectrometry. Sultims 7 and 8 have a
typical sulfoxide absorption in the IR spectra at 1063–1079 cm−1 whereas sultams 11 and 12
exhibit two absorptions at 1126–1159 cm−1/1284–1302 cm−1 for the SO2 group. In their

Figure 2. The helical intermolecular arrangement of the strong hydrogen bonds O–O–H· · ·O–S–O of 3-hydro-
peroxysultam 12f (Symmetry code for S(1B)-S(1D): −x, 1/2 + y, 1/2 − z; Symmetry code for S(1B)-S(1A): x,
1 + y, z).
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Oxyfunctionalization of isothiazolium salts 215

1H NMR spectra, sultims 7 and 8 possess a chemical shift of H-3 proton at 6.32–6.73 ppm,
and in their 13C NMR spectra the chemical shift of C-3 appears at 99.07–103.92 ppm. From
past investigations, it is known and confirmed with X-ray crystal-structure analysis that the
13C chemical shift of sultims rac-cis 7 and 8 is shifted to lower field [16, 17]. Therefore, we
also allocated the rac-cis 7 and 8 to lower field (99.07–103.92 ppm) and the rac-trans 7 and 8
to higher field at 97.60–99.28 ppm. The 1H NMR spectra of 3-hydroperoxysultams 11 and 12
are characterized by the H-3 proton absorption at 6.51–7.29 ppm. The 13C NMR spectra have
a chemical shift of C-3 at 90.05–94.85 ppm. In the table 3, the complete data of the sultams
11 and 12 are presented.

As expected [7], the oxidation of the salts 1 and 2 with 30% H2O2 in glacial acetic acid at
80 ◦C for 8–24 h (method A) gave the 3-oxosultams 15e and f and 16d–f in good yields (42–
83%; see tables 1 and 2). By following this procedure, surprisingly, a mixture of 15b and the
respective very stable 3-hydroperoxide 11b was isolated. After dehydration of 11b in ethanol
and conc. HCl at 80 ◦C the corresponding pure 3-oxosultam 15b was obtained (method B).

Another method used to synthesize the 3-oxosultams 15 and 16 is the oxidation of 13 and
14, which were easily synthesized from isothiazolium salts 1 and 2 with MMPP . 6H2O in
CH3CN, with (pyH)2Cr2O7 in CH2Cl2 for 8 hs at room temperature (method C).

The symmetrical and antisymmetrical stretching vibration of the SO2 group in IR spectra
at 1139–1159 cm−1 and 1249–1332 cm−1, and C=O absorption bands at 1728–1736 cm−1,
as well as the chemical shift of C-3 at 159.70–161.83 ppm in 13C NMR spectra, characterize
3-oxosultams 15 and 16. The inhibitory potential of the new isothiazol-3(2H )-one 1,1-dioxides
15 and 16 with stabilizing aryl substituents in the 2-, 4- and/or 5-position will be tested towards
various serine proteases.

Furthermore, we investigated the oxidation of isothiazolium salts 1 and 2 with MMPP . 6H2O
in an ultrasound bath at 50 ◦C in CH3CN. After 3 h, using a one-step-method, the

Table 1. The oxidation of salts 1a–c, e, f (R1 = C6H5).

pKa of rac-cis-
Salt R2 anilinium 7 [%] 11 [%] 13 [%] 15 [%]a

1a 2,4-(NO2)2 −4.27 86 66 38[7]
1b 2-Cl,4-NO2 −1.05 97b 71 89 58d

1c 4-NO2 1.00 74c 67 65[7]
1e H 4.63 62 83 83
1f 4-OCH3 5.34 66 68

aMethod A.
brac-cis 7b/rac-trans 7b/11b (4:1:2).
crac-cis 7c/rac-trans 7c/11c (4:1:2).
dMethod B, C (43%).

Table 2. The oxidation of salts 2a, c–f (R1 = CH3).

pKa of rac-cis-
Salt R2 anilinium 8 [%] 12 [%] 14 [%] 16 [%]a

2a 2,4-(NO2)2 −4.27 20b 57 48[7]
2c 4-NO2 1.00 29c 95 91[7]
2d 2-Cl 2.65 68 62 61
2e H 4.63 21 93 48 73
2f 4-OCH3 5.34 – 78 42

aMethod A.
brac-cis 8a/rac-trans 8a/12a (2:1:1).
crac-cis 8c/rac-trans 8c/12c (2:1:2).
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acceptor-13b, and donor-substituted 3-hydroxysultams 13e and 14e were obtained as colour-
less crystals in very high yields (48–89%). The reaction mechanism is shown in scheme 1. The
primary attack in this oxidation sequence with MMPP is in contrast to that of the H2O2/AcOH
system [14, 15]. The first step of this oxidation occurred by attack of MMPP at the sulfur atom
of salts 1 and 2 to form the reactive, not-isolable S-oxide intermediates 5 and 6, which reacted
with the nucleophilic oxygen of water to give 13 and 14. The rac-cis/trans sultims 9 and 10
could not be isolated.

This new synthesis with MMPP.6H2O for 3-hydroxysultams 13 and 14 is better than the
oxidation–reduction pathway of the salt 1b via the 3-hydroperoxide 11b, and the reduction
with Na2SO3. Using the MMPP method, the hydroxide 13b was isolated in 89% yield, and
when the oxidation–reduction process was applied only a 58% total yield was obtained.

The 3-hydroxysultams 13 and 14 displayed the characteristic IR band of the sulfonyl group at
1130–1157 cm−1 and 1290–1298 cm−1. In the 1H NMR spectra of 13 and 14, the H-3 proton
absorptions appear at 6.16–6.43 ppm, and the OH-function at 6.57–6.65 ppm. The typical
13C NMR data are 81.40–83.58 ppm for C-3.

In further investigations, we want to analyse the reaction of isothiazolium salts 1 and 2
with other O- or N-nucleophiles, e.g. MMPP · 6H2O in alcohol, to form 3-alkoxy-sultims
and -sultams.

Conclusions

In summary, the oxidation of diaryl- and triaryl-substituted isothiazolium salts 1 and 2 is a
convenient method to synthesize 3-hydroperoxysultims 7 and 8, the corresponding sultams
11 and 12, and also 3-hydroxysultams 13 and 14. Moreover, we could isolate for the first
time the 3-hydroperoxyisothiazole 3a after 15 min in H2O2/AcOH at room temperature, and,
unexpectedly, the pure 3-hydroperoxysultim rac-cis 8e with unsubstituted N-aryl ring as a
crystalline product. The solid-state structure of the sultam 12f was measured with X-ray
crystallography. Furthermore, three routes to synthesize 3-oxosultams 15 and 16 have been
found and established by oxidation of the precursors. The new synthesized di- and triaryl-
substituted isothiazol-3(2H )-one 1,1-dioxides 15 and 16 are potent inhibitors of the human
leukocyte elastase [7, 21].

3. Experimental

3.1 General

Mp: Boetius micro-melting-point apparatus; corrected. IR spectra: Genisis FTIR Unicam
Analytical System (ATI Mattson); KBr pellets; values in cm−1. 1H NMR: Varian Gemini-
200 and 300; δ in ppm rel. to TMS as internal standard. 13C NMR spectra: 50 or 100 MHz,
recorded on the named spectrometers. MS: Quadrupole-MS VG 12-250; 70 eV. Elemental
analysis: Heraeus CHNO Rapid Analyzer.

3.2 Synthesis of 2,4,5-triarylisothiazolium perchlorates (1) and
5-methyl-2,4-diarylisothiazolium perchlorates (2)

The new salts 1b,e,f and 2d were prepared according to literature procedure [13]. Compounds
1a,c and 2a,c were described in [7], 2e in [22], and 2f in [23].
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3.2.1 2-(2-Chloro-4-nitrophenyl)-4,5-diphenylisothiazolium perchlorate (1b). Yield
57%; mp 273–277 ◦C; 1H NMR (DMSO-d6) δ (ppm) 7.41–7.65 (m, 10H, Ar), 8.35 (d, 1H,
Ar), 8.56 (dd, J = 8.6 Hz, J = 2.3 Hz, 1H, Ar), 8.75 (d, J = 2.4 Hz, 1H, Ar), 9.97 (s, 1H,
H-3); 13C NMR (DMSO-d6) δ (ppm) 123.90, 125.67, 125.89, 125.90, 128.43, 129.23, 129.38,
129.62, 129.74, 129.83, 131.06, 131.15, 132.40, 134.95, 138.68, 149.53, 161.16 (C-3), 169.27;
IR (KBr) ν (cm−1) 1093 (ClO−

4 ), 1350 (NO2), 1531 (NO2); ESI-MS (m/z) 393.0 (M-ClO4)+;
elemental analysis for C21H14Cl2N2O6S (493.3): Calculated (%) C, 51.13; H, 2.86; N, 5.68;
S, 6.50. Found (%) C, 51.10; H, 2.74; N, 5.58; S, 6.66.

3.2.2 2,4,5-Triphenylisothiazolium perchlorate (1e). Yield 81%; mp 210–212 ◦C; 1H
NMR (DMSO-d6) δ (ppm) 7.51–7.65 (m, 10H, Ar), 7.77–7.80 (m, 3H, Ar), 8.03–8.08 (m,
2H, Ar), 10.03 (s, 1H, H-3); 13C NMR (DMSO-d6) δ (ppm) 123.35, 125.92, 128.90, 129.13,
129.38, 129.58, 129.65, 130.60, 131.61, 132.15, 135.35, 136.66, 157.48 (C-3), 165.42; IR
(KBr) ν (cm−1) 1092 (ClO−

4 ); ESI-MS (m/z) 313.0 (M - ClO4)+; elemental analysis for
C21H16ClNO4S (413.9): Calculated (%) C, 60.94; H, 3.90; N, 3.38. Found (%) C, 60.43; H,
4.04; N, 3.26.

3.2.3 2-(4-Methoxyphenyl)-4,5-diphenylisothiazolium perchlorate (1f). Yield 42%;
mp 146–149 ◦C; 1H NMR (DMSO-d6) δ (ppm): 3.92 (s, 3H, OCH3), 7.30–7.59 (m, 10H, Ar),
7.97, 8.01 (d, JAB = 8.8 Hz, 4H, Ar), 9.94 (s, 1H, H-3); 13C NMR (DMSO-d6) δ (ppm) 55.96
(OCH3), 115.43, 125.01, 125.90, 128.90, 129.04, 129.30, 129.47, 129.55, 129.62, 131.96,
135.06, 157.23 (C-3), 161.36, 164.48; IR (KBr) ν (cm−1) 1113 (ClO−

4 ); ESI-MS (m/z) 344.1
(M - ClO4)

+; elemental analysis for C22H18ClNO5S (443.9): Calculated (%) C, 59.53; H,
4.09; N, 3.16; S, 7.22. Found (%): C, 59.70; H, 3.89; N, 3.33; S, 7.07.

3.2.4 2-(2-Chlorophenyl)-5-methyl-4-phenylisothiazolium perchlorate (2d). Yield
83%; mp 148–149 ◦C; 1H NMR (DMSO-d6) δ (ppm) 2.96 (s, 3H, 5-CH3), 7.61–7.73 (m, 9H,
Ar), 9.81 (s, 1H, H-3); 13C NMR (DMSO-d6) δ (ppm) 15.00 (5-CH3), 129.48, 129.73, 129.97,
130.23, 130.29, 131.64, 134.24, 134.48, 137.08, 160.15 (C-3), 170.07; IR (KBr) ν (cm−1):
1086 (ClO−

4 ); ESI-MS (m/z) 286.1 (M - ClO4)+; elemental analysis for C16H13Cl2NO4S
(386.3): Calculated (%) C, 49.75; H, 3.39; N, 3.63. Found (%) C, 49.60; H, 3.19; N, 3.61.

3.3 Synthesis of 3-hydroperoxy-2-(2,4-dinitrophenyl)-4,5-diphenyl-2,3-
dihydroisothiazole (3a)

H2O2 (0.7 mL, 30%) was added to a stirred suspension of 1a (0.26 mmol) in AcOH (0.7 mL)
at room temperature. After dissolution of salt 1a, a colourless precipitate of 3a and unchanged
salt 1a (3:1) was obtained after 15 min, and the title product isolated.

3.3.1 3-Hydroperoxy-2-(2,4-dinitrophenyl)-4,5-diphenyl-2,3-dihydroisothiazole (3a).
Yield 96% (mixture with 1a); mp 180–183... 270–275 ◦C; 1H NMR (acetone-d6) δ (ppm) 6.36
(s, 1H, H-3), 7.42–7.75 (m, 10H, Ar), 8.75 (d, J = 8.60 Hz, 1H, Ar), 9.05 (dd, J = 8.6 Hz,
J = 2.4 Hz, 1H, Ar), 9.29 (d, J = 2.4 Hz, 1H, Ar); 13C NMR (acetone-d6) δ (ppm) 96.18
(C-3), 116.81, 121.35, 127.62, 128.57, 128.91, 129.02, 129.31, 129.55, 129.77, 129.91, 130.18,
130.49, 131.77, 132.98, 133.62, 134.81, 139.35; IR (KBr) ν (cm−1) 1344 (NO2), 1534 (NO2);
ESI-MS (m/z) 436.1 (M - H)−; C21H15N3O6S (437.4).
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3.4 Synthesis of 3-hydroperoxy-2,4,5-triaryl-2,3-dihydroisothiazole 1-oxides (rac-cis 7)
and 3-hydroperoxy-5-methyl-2,4-diaryl-2,3-dihydroisothiazole 1-oxides (rac-cis 8)

3.4.1 General procedure. H2O2 (0.7 mL, 30%) was added to a stirred suspension of a salt
1a–c or 2a,c–e (0.26 mmol) in AcOH (0.7 mL) at room temperature. After dissolution of 1
or 2, a colourless precipitate of 7a–c or 8a,c–e was obtained after 1.5–23 h and was isolated.
The crude product was washed with water. The oxidation of salts 1b and c and 2a and c gave
a mixture of rac-cis 7 with rac-trans 7 and sultams 11 as well as rac-cis 8 with rac-trans 8
and sultams 12 (see also tables 1 and 2)

3.4.2 3-Hydroperoxy-2-(2,4-ditrophenyl)-4,5-diphenyl-2,3-dihydroisothiazole 1-oxide
(rac-cis 7a). Yield 86%; mp 123–126 ◦C; 1H NMR (acetone-d6) δ (ppm) 6.59 (s, 1H, H-
3), 7.39–7.53 (m, 10H, Ar), 8.32 (d, J = 8.9 Hz, 1H, Ar), 8.67 (dd, J = 8.9 Hz, J = 2.6 Hz,
1H, Ar), 8.86 (d, J = 2.6 Hz, 1H, Ar), 11.37 (s, 1H, OOH); 13C NMR (acetone-d6) δ (ppm)
102.59 (C-3) 121.51, 121.62, 123.25, 128.21, 128.62, 128.83, 128.90, 129.08, 129.15, 129.26,
129.41, 129.64, 129.80, 129.91, 130.07, 130.35, 130.43, 131.33, 131.42, 135.06; IR (KBr) ν

(cm−1) 1072 (SO), 1344 (NO2), 1535 (NO2); EI-MS (m/z) 435.1 (M+• − H2O); elemental
analysis for C21H15N3O7S (453.4): Calculated (%) C, 55.63; H, 3.33; N, 9.27. Found (%) C,
55.74; H, 3.22; N, 9.09.

3.4.3 2-(2-Chloro-4-nitrophenyl)-3-hydroperoxy-4,5-diphenyl-2,3-dihydroisothiazole
1-oxide (rac-cis 7b). Yield 97%; mp 119–123 ◦C; 1H NMR (acetone-d6) δ (ppm)a 6.49 (s,
1H, H-3), 7.38–7.59 (m, 10H, Ar), 8.05 (d, J = 8.7 Hz, 1H, Ar), 8.16 (d, J = 8.7 Hz, 1H, Ar),
8.37–8.41 (m, 1H, Ar); 13C NMR (acetone-d6) δ (ppm)b 101.50 (C-3), 113.49, 123.17, 123.28,
124.36, 125.61, 125.72, 128.78, 128.83, 128.93, 129.22, 129.28, 129.36, 129.40, 129.55,
129.66, 129.79, 130.42, 133.59, 133.93; IR (KBr) ν (cm−1) 1063 (SO), 1348 (NO2), 1522
(NO2); EI-MS (m/z) 424.3 (M+• − H2O); elemental analysis for C21H15ClN2O5S (442.9):
Calculated (%) C, 56.95; H, 3.41; N, 6.33. Found (%) C, 56.83; H, 3.28; N, 6.29. NMR data
for rac-trans 7b: a6.73 (s, 1H, H-3); b97.60 (C-3);

3.4.4 3-Hydroperoxy-2-(4-nitrophenyl)-4,5-diphenyl-2,3-dihydroisothiazole 1-oxide
(rac-cis 7c). Yield 74%; mp 130–133 ◦C; 1H NMR (acetone-d6) δ (ppm)a 7.02 (s, 1H, H-3),
7.37–7.64 (m, 10H, Ar), 8.26–8.33 (m, 4H, Ar), 11.22 (s, 1H, OOH); 13C NMR (acetone-d6) δ

(ppm)b 100.64 (C-3), 117.99, 126.79, 130.02, 130.20, 130.47, 130.65, 130.70, 130.77, 130.89,
131.00, 131.17, 131.59, 131.90, 132.86, 140.33, 147.65; IR (KBr) ν (cm−1) 1072 (SO), 1344
(NO2), 1535 (NO2); EI-MS (m/z) 406.0 (M+• − H2O); elemental analysis for C21H16N2O6S
(424.4): Calculated (%) C, 59.43; H, 3.80; N, 6.60. Found (%) C, 59.22; H, 3.71; N, 6.69.

NMR data for rac-trans 7c: a7.09 (s, 1H, H-3); b98.66 (C-3).

3.4.5 3-Hydroperoxy-2-(2,4-dinitrophenyl)-5-methyl-4-phenyl-2,3-dihydroisothiazole
1-oxide (rac-cis 8a). Yield 20%; mp 98–101 ◦C; 1H NMR (acetone-d6) δ (ppm)a 2.29 (s,
3H, CH3), 6.56 (s, 1H, H-3), 7.47–7.66 (m, 5H, Ar), 7.81 (d, J = 9.5 Hz, 1H, Ar), 8.28 (dd,
J = 9.5 Hz, J = 2.7 Hz, 1H, Ar), 8.93–8.96 (m, 1H, Ar); 13C NMR (acetone-d6) δ (ppm)b

10.60 (CH3), 99.07 (C-3), 117.28, 122.21, 123.83, 129.11, 129.60, 129.73, 129.96, 130.02,
130.56, 130.82, 131.08, 137.88, 139.16, 146.10; IR (KBr) ν (cm−1) 1070 (SO), 1348 (NO2),
1535 (NO2); EI-MS (m/z) 392.1 (M+•+ H); elemental analysis for C16H13N3O7S (391.4):
Calculated (%) C, 49.10; H, 3.35; N, 10.74. Found (%) C, 49.19; H, 3.28; N, 10.69.
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NMR data for rac-trans 8a: a6.55 (s, 1H, H-3); b99.28 (C-3).

3.4.6 3-Hydroperoxy-2-(4-nitrophenyl)-5-methyl-4-phenyl-2,3-dihydroisothiazole 1-
oxide (rac-cis 8c). Yield 68%; mp 134–136 ◦C; 1H NMR (acetone-d6) δ (ppm)a 2.37 (s, 3H,
CH3), 6.48 (s, 1H, H-3), 7.01–7.51 (m, 5H, Ar), 7.82–8.01 (m, 4H, Ar); 13C NMR (acetone-d6)
δ (ppm)b 12.28 (CH3), 103.92 (C-3), 108.92, 110.85, 113.98, 114.22, 125.70, 126.52, 126.87,
129.36, 129.50, 129.70, 129.81, 130.34, 130.54, 130.68; IR (KBr) ν (cm−1) 1070 (SO), 1342
(NO2), 1504 (NO2); EI-MS (m/z) 328.1 (M+• − H2O); elemental analysis for C16H14N2O5S
(346.4): Calculated (%) C, 55.48; H, 4.07; N, 8.09. Found (%) C, 55.36; H, 3.98; N, 8.08.

NMR data for rac-trans 8c: a6.68 (s, 1H, H-3); b98.41 (C-3).

3.4.7 2-(2-Chlorophenyl)-3-hydroperoxy-5-methyl-4-phenyl-2,3-dihydroisothiazole 1-
oxide (rac-cis 8d). Yield 68%; mp 115–117 ◦C; 1H NMR (acetone-d6) δ (ppm) 2.27 (s, 3H,
5-CH3), 6.32 (s, 1H, H-3), 7.46–7.86 (m, 9H, Ar); 13C NMR (acetone-d6) δ (ppm) 11.26 (5-
CH3), 101.82 (C-3), 128.24, 128.85, 129.02, 129.11, 129.23, 129.90, 130.35, 130.54, 130.94,
132.63, 134.47, 135.39, 139.13, 143.14; IR (KBr) ν (cm−1) 1066 (SO); EI-MS (m/z) 335.0
(M+•); elemental analysis for C16H14ClNO3S (335.8): Calculated (%) C, 57.23; H, 4.20; N,
4.17. Found (%) C, 57.32; H, 4.07; N, 4.23.

3.4.8 3-Hydroperoxy-5-methyl-2,4-diphenyl-2,3-dihydroisothiazole 1-oxide (rac-cis
8e). Yield 21%; mp 134–136 ◦C; 1H NMR (acetone-d6) δ (ppm) 2.23 (s, 3H, 5-CH3), 6.72 (s,
1H, H-3), 7.39–7.70 (m, 10H, Ar), 11.03 (s, 1H, OOH); 13C NMR (DMSO-d6) δ (ppm) 12.20
(5-CH3), 99.13 (C-3), 119.36, 124.54, 130.06, 130.37, 130.47, 130.63, 130.82; IR (KBr) ν

(cm−1) 1079 (SO); EI-MS (m/z) 301.0 (M+•); elemental analysis for C16H15NO3S (301.4):
Calculated (%) C, 63.77; H, 5.02; N, 4.65. Found (%) C, 63.67; H, 5.12; N, 4.49.

3.5 Synthesis of 3-hydroperoxy-2,4,5-triaryl-2,3-dihydroisothiazole 1,1-dioxides (11)
and 3-hydroperoxy-5-methyl-2,4-diaryl-2,3-dihydroisothiazole 1,1-dioxides (12)

3.5.1 General procedure. H2O2 (0.7 mL, 30%) was added to a suspension of 1a–c,e,f
or 2a,c–f (0.26 mmol) in AcOH (0.7 mL). The solution was stirred for 24–120 h at room
temperature. The crude product 11 or 12 was washed with water, see table 3.

3.6 Synthesis of 3-hydroxy-2,4,5-triaryl-2,3-dihydroisothiazole 1,1-dioxides (13b,e) and
3-hydroxy-5-methyl-2,4-diaryl-2,3-dihydroisothiazole 1,1-dioxides (14e)

3.6.1 General procedure. Method A: MMPP · 6H2O (1.56 mmol) was added to a sus-
pension of a salt 1b,e or 2e (0.26 mmol) in acetonitrile (4 mL). The mixture was left in an
ultrasound bath for 3 h at 50 ◦C. The excess of MMPP was decomposed by addition of sodium
thiosulfate, the generated acid was neutralized with saturated aqueous NaHCO3, and the mix-
ture was extracted with Et2O (3 × 3 mL).The combined organic layers were dried over MgSO4.
The solvent was evaporated off and a 3-hydroxysultam 13b,e or 14e was obtained. Method B:
3-Hydroperoxide 11b (0.26 mmol) was added to a solution of Na2SO3 · 5H2O (0.52 mmol) in
distilled water (4 mL). The suspension was stirred for 24 h at room temperature. After stirring,
the mixture was extracted with Et2O (3 × 3 mL). The combined organic layers were dried
over MgSO4. The solvent was evaporated off and compound 13b was obtained.
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3.6.2 2-(2-Chloro-4-nitrophenyl)-3-hydroxy-4,5-diphenyl-2,3-dihydroisothiazole 1,1-
dioxide (13b). Yield 89% (Method A)/63% (Method B); mp 225–230 ◦C; 1H NMR
(acetone-d6) δ (ppm) 6.43 (d, J = 8.8 Hz, 1H, H-3), 6.57 (d, J = 8.8 Hz, 1H, OH), 7.38–7.58
(m, 10H, Ar), 8.09 (d, J = 8.8 Hz, 1H, ar), 8.39 (dd, J = 8.7 Hz, J = 2.6 Hz, 1H, Ar), 8.50
(d, J = 2.6 Hz, 1H, Ar); 13C NMR (acetone-d6) δ (ppm) 83.58 (C-3), 123.67, 126.38, 127.87,
129.52, 129.95, 130.09, 130.38, 130.51, 130.69, 130.97, 131.29, 131.43, 131.96, 132.69,
134.06, 135.20, 136.51, 137.27, 138.49, 143.05; IR (KBr) ν (cm−1) 1157 (SO2), 1298 (SO2),
1350 (NO2), 1525 (NO2); EI-MS (m/z) 442.0 (M+•); elemental analysis for C21H15ClN2O5S
(442.9): Calculated (%) C, 56.95; H, 3.41; N, 6.33. Found (%) C, 57.12; H, 3.67; N, 6.09.

3.6.3 3-Hydroxy-2,4,5-triphenyl-2,3-dihydroisothiazole 1,1-dioxide (13e). Yield 83%;
mp 195–200 ◦C; 1H NMR (acetone-d6) δ (ppm) 6.16 (d, J = 9.9 Hz, 1H, H-3), 6.65 (d,
J = 9.9 Hz, 1H, OH), 7.38–7.66 (m, 15H, Ar); 13C NMR (acetone-d6) δ (ppm) 81.40 (C-3),
121.90, 128.38, 128.67, 128.94, 129.21, 129.33, 129.44, 129.53, 129.69, 129.80, 129.93,
130.11, 130.44, 130.55, 130.69, 130.89, 131.26, 131.86, 132.77, 133.42; IR (KBr) ν (cm−1)
1147 (SO2), 1292 (SO2); EI-MS (m/z) 361.0 (M+• − H2); elemental analysis for C21H17NO3S
(363.4): Calculated (%) C, 69.40; H, 4.71; N, 3.85. Found (%) C, 69.50; H, 4.72; N, 3.96.

3.6.4 3-Hydroxy-5-methyl-2,4-diphenyl-2,3-dihydroisothiazole 1,1-dioxide (14e). Yield
48%; mp 125–132 ◦C; 1H NMR (acetone-d6) δ (ppm) 2.18 (s, 3H, CH3), 5.96 (d, J = 8.8 Hz,
1H, H-3), 6.50 (d, J = 10.0 Hz, 1H, OH), 7.18–7.64 (m, 10H, Ar); 13C NMR (acetone-d6)
δ (ppm) 7.81 (CH3), 81.88 (C-3), 121.80, 125.01, 128.61, 128.74, 128.91, 129.16, 129.42,
129.67, 129.89, 129.98, 130.33, 130.39; IR (KBr) ν (cm−1) 1130 (SO2), 1290 (SO2); EI-MS
(m/z) 299.0 (M+• − H2); elemental analysis for C16H15NO3S (301.4): Calculated (%) C,
63.77; H, 5.02; N, 4.65. Found (%) C, 63.30; H, 4.93; N, 4.46.

3.7 Synthesis of 2,4,5-triarylisothiazol-3(2H)-one 1,1-dioxides(15) and
5-methyl-2,4-diarylisothiazol-3(2H)-one 1,1-dioxides (16)

3.7.1 General procedure. Method A: H2O2 (0.7 mL, 30%) was added to a suspension of
1b,e,f or 2d–f (0.26 mmol) in AcOH (0.7 mL). The solution was stirred for 8–24 h at 80 ◦C.
After cooling, the 3-oxosultams 15 and 16 were isolated.

Method B: By following procedure A, a mixture containing 15b and respective hydroper-
oxide 11b was isolated in this case. The mixture was dissolved in ethanol (4 mL), and conc.
HCl (0.3 mL) was added. The mixture was refluxed for 6–8 h. After cooling, the corresponding
3-oxosultam 15b was isolated by filtration.

Method C: (pyH)2Cr2O7 (0.65 mmol) was added to a solution of 13b (0.26 mmol) in CH2Cl2
(1 mL). The suspension was stirred for 8 h at room temperature. Purification was by column
chromatography (Al2O3, EtOAc). The combined organic layers were washed successively
with aq. Na2CO3 (10%) and saturated aq. NaCl, and dried over Na2SO4. The solvent was
evaporated off and the 3-oxosultam 15b was obtained. Compounds 15a and c and 16a and b
were described in [7].

3.7.2 2-(2-Chloro-4-nitrophenyl)-4,5-diphenylisothiazol-3(2H)-one 1,1-dioxide (15b).
Yield 58% (Method B)/43% (Method C); mp 180–185 ◦C; 1H NMR (acetone-d6) δ (ppm):
7.50–7.70 (m, 10H, Ar), 8.10 (d, J = 8.7 Hz, 1H, Ar), 8.52 (dd, J = 8.6 Hz, J = 2.4 Hz,
1H, Ar), 8.65 (d, J = 2.4 Hz, 1H, Ar); 13C NMR (acetone-d6) δ (ppm) 125.01, 126.31,
127.45, 128.57, 130.19, 131.04, 131.96, 132.09, 133.35, 134.17, 134.72, 134.81, 137.61,
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146.60, 151.15, 159.81 (C-3); IR (KBr) ν (cm−1) 1151 (SO2), 1302 (SO2), 1344 (NO2),
1531 (NO2), 1736 (CO); EI-MS (m/z) 440.1 (M+•); elemental analysis for C21H13ClN2O5S
(440.9): Calculated (%) C, 57.21; H, 2.97; N, 6.35. Found (%) C, 57.30; H, 3.18; N, 6.42.

3.7.3 2,4,5-Triphenylisothiazol-3(2H)-one 1,1-dioxide (15e). Yield 83% (Method A);
mp 231–233 ◦C; 1H NMR (acetone-d6) δ (ppm) 7.47–7.68 (m, 15H, Ar); 13C NMR (acetone-
d6) δ (ppm) 123.59, 126.01, 128.43, 129.31, 129.82, 130.12, 130.14, 130.33, 130.39, 130.51,
130.62, 131.01, 131.33, 132.24, 134.41, 144.63, 160.11 (C-3); IR (KBr) ν (cm−1) 1142 (SO2),
1295 (SO2), 1733 (CO); EI-MS (m/z) 361.0 (M+•); elemental analysis for C21H15NO3S
(361.4): Calculated (%) C, 69.79; H, 4.18; N, 3.88. Found (%) C, 69.98; H, 4.22; N, 3.76.

3.7.4 2-(4-Methoxyphenyl)-4,5-diphenylisothiazol-3(2H)-one 1,1-dioxide (15f). Yield
68% (Method A); mp 178–179 ◦C; 1H NMR (acetone-d6) δ (ppm) 3.89 (s, 3H, OCH3), 7.13,
7.18 (d, JAB = 9.0 Hz, 4H, Ar), 7.46–7.59 (m, 10H, Ar); 13C NMR (acetone-d6) δ (ppm) 56.02
(OCH3), 115.95, 122.32, 126.22, 128.54, 129.37, 130.21, 130.39, 131.08, 131.26, 131.34,
132.27, 161.83 (C-3); IR (KBr) ν (cm−1) 1144 (SO2), 1294 (SO2), 1728 (CO); EI-MS (m/z)
391.0 (M+•); elemental analysis for C22H17NO4S (391.4): Calculated (%) C, 67.50; H, 4.38;
N, 3.58. Found (%) C, 67.70; H, 4.29; N, 3.51.

3.7.5 2-(2-Chlorophenyl)-5-methyl-4-phenylisothiazol-3(2H)-one 1,1-dioxide (16d).
Yield 61% (Method A); mp 193–195 ◦C; 1H NMR (acetone-d6) δ (ppm): 2.50 (s, 3H, 5-CH3),
7.55–7.68 (m, 9H, Ar); 13C NMR (acetone-d6) δ (ppm): 9.88 (5-CH3), 128.39, 128.58, 129.95,
130.13, 130.26, 130.33, 131.55, 131.81, 132.41, 133.71, 135.39, 136.24, 145.94, 159.70 (C-3);
IR (KBr) ν (cm−1) 1159 (SO2), 1332 (SO2), 1735 (CO); EI-MS (m/z) 334.0 (M+•); elemental
analysis for C16H12ClNO3S (333.8): Calculated (%) C, 57.57; H, 3.62; N, 4.20. Found (%):C,
57.70; H, 3.72; N, 4.07.

3.7.6 5-Methyl-2,4-diphenylisothiazol-3(2H)-one 1,1-dioxide (16e). Yield 73% (Method
A); mp 103–104 ◦C; 1H NMR (acetone-d6) δ (ppm) 2.40 (s, 3H, 5-CH3), 7.28–7.67 (m, 10H,
Ar); 13C NMR (acetone-d6) δ (ppm) 9.39 (5-CH3), 121.06, 127.35, 129.18, 129.53, 129.60,
129.98, 130.63, 130.66, 130.89, 134.49, 143.29, 159.77 (C-3), 166.61; IR (KBr) ν (cm−1) 1139
(SO2), 1249 (SO2), 1731 (CO); EI-MS (m/z) 299.0 (M+•); elemental analysis for C16H13NO3S
(299.4): Calculated (%) C, 64.20; H, 4.38; N, 4.68. Found (%) C, 64.10; H, 4.21; N, 4.66.

3.7.7 5-Methyl-2-(4-methoxyphenyl)-4-phenylisothiazol-3(2H)-one 1,1-dioxide (16f).
Yield 42% (Method A); mp 119–120 ◦C; 1H NMR (acetone-d6) δ (ppm: 2.50 (s, 3H, 5-CH3),
3.92 (s, 3H, p-OCH3), 7.16–7.19 (m, 4H, Ar), 7.47–7.71 (m, 5H, Ar); 13C NMR (acetone-d6)
δ (ppm): 8.40 (5-CH3), 55.35 (p-OCH3), 115.25, 121.74, 127.64, 128.77, 130.34, 130.38,
130.54, 134.43, 143.55, 161.12 (C-3); IR (KBr) ν (cm−1) 1145 (SO2), 1249 (SO2), 1731
(CO); EI-MS (m/z) 329.0 (M+•); elemental analysis for C17H15NO4S (329.4): Calculated
(%) C, 61.99; H, 4.59; N, 4.25. Found (%) C, 61.70; H, 4.52; N, 4.29.

3.8 X-ray structural analysis of 3-hydroperoxy-5-methyl-2-(4-methoxyphenyl)-4-phenyl-
2,3-dihydroisothiazole 1,1-dioxide 12f

3.8.1 Crystal data. C17H17NO5S, FW 347.4, T = 223(2) K. Crystal system Monoclinic.
Space group P 2(1)/c, a = 11.0779(8) Å, b = 8.1501(6) Å, c = 18.9432(13) Å, β

106.3570(10)◦, V = 1641.1(2) Å3, Z = 4, ρ = 1.406 mg/m3,Absorption coeff. 0.224 mm−1.
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Crystal size 0.30 × 0.20 × 0.10 mm3. Range for data collection 2.24–28.29◦, index ranges
−14 ≤ h ≤ 12, −10 ≤ k ≤ 10, −17 ≤ l ≤ 24. Reflections collected 10128, independent
reflections 3990 [R(int) = 0.0377]. Absorption correction SADABS, Max./Min. transmis-
sion 0.9779/0.9358, data/parameters 3990/285. Final R indices [I > 2σ(I)] R1 = 0.0426,
wR2 = 0.0854, R indices (all data) R1 = 0.0868, wR2 = 0.0952, Lgst. Diff peak/hole
0.276/−0.308 e Å−3.
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